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Correct” comparison” when editing English scientific papers//
LIU Yuan

Abstract How to correctly compare sentences in English scientific
papers and English abstracts of Chinese scientific papers is a
common problem. Some editors find this challenging. Issues related
to comparison can be classified into three categories: inconsistent
comparison targets, inappropriate phrase structures, and incorrect
comparison data. This paper provides a detailed analysis of two
most common comparison data errors, i.e. , using percent point as
percentage and using incorrect comparison of multiple, supporting
the view that “times more than” is not equal to“times as many
as”, and provides a case study of times + reduction/less
representing a smaller or less multiple relationship. This paper
analyzes 11 typical casesin detail, provides corresponding Chinese
meanings of these cases, and makes specific suggestions for
revision. This paper provides some guidance for fellow journal
editors in dealing with comparison sentences, and may help
researchers improve their English writing.
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=51 The results indicate that the prediction ac-
curacy of EEMDN-SABIGRU is superior to the compara-
ble models. (Z5H% W], EEMDN-SABIGRU 57 ff) T30
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The results indicate that the prediction accuracy of
EEMDN-SABIGRU is superior to those of the comparable

models.

{51 2 For the test images, the average PSNR was
61. 50 dB after hiding 10 000 bits, which exceeds the
recently reported pairwise PEE, pairwise IPVO, LPVO,
dual pairwise PEE, and CNN PEO methods by 3. 19,
1.92, 1.22, 1.39, and 0.73 dB, respectively. (X%fF
ICIER, B 10 000 bit 5 64 1 2 06 (B 45 1 L Ay
61.50 dB, MR HGE 1 Xt PEE %} IPVO \LPVO |
B X PEE Al CNN PEO J5 3k 43 9l & 3.19.1.92,
1.22.1.39 #110.73 dB,)
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For the test images, the average PSNR was 61. 50
dB after hiding 10 000 bits, which exceeds those of the
recently reported pairwise PEE, pairwise IPVO, LPVO,
dual pairwise PEE, and CNN PEO methods by 3. 19,
1.92, 1.22, 1.39, and 0. 73 dB, respectively.
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mechanism like Chu et al. (2018a) converge more easily

Although methods using a discretizing

during training, their output angles are limited to the pre-
set classification set. [ 4 Chu % A (2018a) fffifi
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ATTA i 0 £ B2 A BR T Bt i) o0 2R 46
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Although methods using a discretizing mechanism
like that used in Chu et al. (2018a) converge more easi-
ly during training, their output angles are limited to the
preset classification set.
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45 4 Morrison et al. (2018 ) proposed a pixel-
level grasp detection network with many fewer network
parameters and less computation, making it fully meet the
real-time requirement of robot grasping. ( Morrison 28 A
(2018 ) 2t — i 5 28 AT BRI o0 2%, B AT 5/ o] 2%
SR B /DT, 52 4l R AL g AN HTUBC) S5
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Morrison et al. (2018) proposed a pixel-level grasp
detection network with much fewer network parameters
and less computation, making it fully meet the real-time
requirement of robot grasping.

5 As for search time, the BO algorithm needs
at least 20 min to search CNNs, GPPSO takes slightly
more than BO, about 40 min, and PSO takes the most
time at an average of 100 min on CIFAR-10 and 280 min
on CIFAR-100. (742 HF1H] [+, BO Fyk48 % CNNs &
A EE 20 min, GPPSO B9 (448 2 I 6] 7 i3l 2 T
BO 5k, 2974 40 min, 1] PSO 5% Y48 RN Al fr £,
1 CIFAR-10 45 4 - F14°4 100 min, f£ CIFAR-100
Bl AR 1447 280 min, ) %4 FPAYEE AN 1 Bs .
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As for the search time, the BO algorithm needs at
least 17 min to search CNNs, GPPSO takes much more
than BO, 42 min on average, and PSO takes the most
time at an average of 100 min on CIFAR-10 and 202 min
on CIFAR-100.
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Table 3 Comparisons with the basic algorithms of GPPSO on CIFAR-10 and CIFAR-100 datasets

CIFAR-10 CIFAR-100
Method Test Training Number of Search Training Test Training Number of Search Training
accuracy accuracy parameters  time time accuracy accuracy parameters time time
(%) (%) (x109) (min) (min) (%) (%) (x106) (min) (min)
Manual 92.25 98.71 0.38 116 68.96 90.78 0.40 111
(ResNet20)
BO 92.01 99.92 4.70 20 274 66.47 90.62 4.70 20 279
B()ﬁ{t(‘ 092.26 099,96 5.26 17 367 65.64 75.60 3.57 23 326
PSO 84.17 86.09 4.65 50 258 54.25 28.20 4.70 192 265
PSO_ac 74.57 74.75 6.17 150 361 51.77 54.77 4.74 212 296
GPPSO 01.85 99.95 4.77 45 270 65.91 94.00 4.74 33 330
G PPSO_ ac 05.26 99.96 5.26 39 261 76.36 97.65 4.44 39 304
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5l 6 From Table 7, the time complexity of the
proposed EEMDN-SABiIGRU model is the same level as
other comparable models. ( N3 7 A LI/, AR SCHEH
i) EEMDN-SABIGRU 45 5 (1} bisf 5] &2 2% £ 5 Ho A 2 b
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From Table 7, the time complexity of the proposed
EEMDN-SABiIiGRU model is at the same level as those of

the other comparable models.

{57 The simulations indicated only how the size
of the quantum from 1 x 10” to 1 x 10" affected PPBP.
When the quantum size was too small, the number of
CPU or GPU requests processed in batches became insuf-
ficient. It was equivalent to FRFCFS when the quantum
size was infinitely small. (#i4 H B /R T M 1 x10° ~
1x 107 {7 RSF el i PPBP, 24 & Rt aod /)
i, R AL FE Y CPU 8 GPU R A 2, YT
AT A IERR/ING , B 5 FRECFS J7ik 85340
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The simulations indicated only how the size of the
quantum from 1 x 10°to 1 x 107 affected PPBP. When the
quantum size was too small, the number of CPU or GPU
requests processed in batches became insufficient. The
PPBP was equivalent to the FRFCFS when the quantum

size was infinitely small.

0l 8
with other algorithms, and the bandwidth utilization is
higher than with other schemes. ( [ 2% 3 Z& JT 4 B+ 8] Lt
HABTE LM 2 S0 I3 L HA S )

Ajrpthan with” 2R F DR, A5 RUZAEH K than A1
compared to/with JR& ], HAJHES 2 4b EAZ 0 A —
B, B that FEACHT LA AT S A A, 4848 2 Rl
BT

The network congestion starts later than the other al-

The network congestion starts later than

gorithms , and the bandwidth utilization is higher than that

of the other schemes.

1%, The network congestion starts later compared with
the other algorithms, and the bandwidth utilization is
higher compared with that of the other schemes.
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519 As shown in Table 2, for classification ac-

curacy, GPPSO ranks the fifth among the 10 algorithms
compared on the CIFAR-10 dataset, with up to 11.09%
higher accuracy than PSO and 1. 52% lower accuracy
than the first algorithm (CNN-GA). As for CIFAR-100),
GPPSO achieves good performance that ranks fifth among
the eight algorithms, 22.21% better than the last and on-
ly 3.11% lower than the first. ({13 2 7, 7 CIFAR-
10 Zdiadi b, GPPSO #y 73S HERf 7R 10 FhE % b Ak
55, LE PSO BMERRA R 11, 09% |, FL8E—Fh 57k
CNN-GA RYERG R 1.52% , 7£ CIFAR-100 %¥& %
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Table 2 Comparisons with the manually designed CNNs, non-OA-based methods, and OA-based methods on

CIFAR-10 and CIFAR-100 datasets

Pear Accuracy (%) Number of parameters Search time
Method :
competitor CIFAR-10 CIFAR-100 (= 108) (GPU days)
VGGNet 93.34 7195 20,04
ResNet 03.57 T8.84 1.7
DenseNet 04.76 75.58 0.8
Manually designed Maxout 90.70 61.40
CNN Network in network 01.19 64.32
Highway network 92.40 67.66
ALL-CNN 92.76 66.20 1.3
FractalNet 94.76 77.51 229
BO 92.01 66.47 4.70 0.02
AK 88.56 LT
Non-OA-based NAS 93.99 0.8 22 400
method MetaQNN 93.08 72.86 100
EAS 95.77 234 10
Block-QNN-S 95.62 79.35 6.1 a0
PSO 84.17 54.25 4.65/4.70 0.05/0.19
Large-scale evolution 94.60 77.00 5.4/404 2750
Hierarchical evolution 96.37 300
CGP-CNN 94.02 1.68 27
OA-based method CNN-GA 96.78 7947 2.9/4.1 35/40
AE-CNN 95.70 79.15 27/36
AE-CNN+E2EPP 94.70 TT.08 8.5
SHEDA-CNN 96.36 7R84 10.88/18.64 0.58/0.97
Genetic CNN 92.90 70.97 817
Our method GPPSO 05.26 76.36 5.26/4.44 0.04

The results before and after </

are based on the CIFAR-10 and CIFAR-100 datasets, respectively
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PALSCh AR W, B2 A1, 95.26% - 84.17%
=11.09% ,FIR 0 & X2 GPPSO 4325 HE#H 2 tb PSO
IYZRMER AR 11. 09 170 1, 7R RO A LR IR N
11.09% ;(95.26% —84.17% )/84.17% =13.18% ,[H
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As shown in Table 2, for classification accuracy,
GPPSO ranks the fifth among the 10 algorithms based on
the CIFAR-10 dataset, with up to 13. 18% higher accu-
racy than that of PSO and 1. 57% lower accuracy than
that of the first algorithm ( CNN-GA). As for CIFAR-
100, GPPSO achieves good performance, which is the
sixth among the eight algorithms, 40. 76% better than

that of the last and only 3. 91% lower than that of the
first.
2.3.2 fEHBRER
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[a] 55, 15718 times more than £l times as many as [t 481

[

45110 According to our simulation results on the
constructed CPU-GPU heterogeneous system model, the
average number of GPU memory requests per unit time is
50 times more than the number of CPU memory requests.

ZEik A is 50 times more than B FZAEAE 2 FhHE
fif: A LLB 27T 50 (A2 B RS A%) B A 2 B # S0
ffo (AR B 95 S DOBUIR R B (26 10 i) i R
& :three times longer than sth [LIEYK 2 %, 35 T
three times as long as sth LAY 3 f5 K" A K times
more than Z[] T times as many as, {HZS3C7A 5 more
than A% By J& FOAR SR, WM 1) £ J3E LA, 7R LU R
B EUN TR - K//NJLAE” , three times more
than N2 2 7 3 457, (SEHBIRIREHR) YR
i :“he deserved all these prizes because he spent three
times more energy than I did on study, fiB7E5:~> 463
(1 LB 2 3 A%, T LU B R 3R A5 2057 2 LA
N A E R (BRI AR) H 2Rk : “ Tts profits are rising
four times faster than the average company, H.FEIELL
PR — M w4 A% 0 3 BE S 7 AT DUAR B S AR S
AL A

BEXF AR B A Rk , JE I MU B,
e T SO R T U, M i SR VR TR ) AR
BLIFBUWICRAE . AR 28 7 AR A, i AR O
MRAEA S 1) CPU-GPU 244 RGTRL R b A {f FLAS
SRR, L B ] Y GPU 97 34 A A7 1 SR B0 CPU



56 G %

536 &

NAAESR B 50 A o 108 JE /R RZ R Ch -
According to our simulation results on the construc-
ted CPU-GPU heterogeneous system model, the average

number of GPU memory requests per unit time is 50 times

that of CPU memory requests.

TER SR SO — A F AR T A8 Y
b HRAET SRRSO, U H R — 2L AT Y
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B AR EOBO , PERESR TR o AR SCHR T times +
reduction/less F7R B /NG /D WS E G & L IR 46 0 43
HerIE B HXS B S0

o B 11 Compared with original NOVA and
DWARM (the state-of-the-art wearleveling-aware alloca-

tor of persistent memory file system), experimental re-
sults show that the proposed WMAlloc can reduce 4. 11
x , 1.81 x maximum write and achieve 1.02 x , 1.64 x
performance improvement with four workloads on average,
respectively. Furthermore, the proposed WMAlloc-BMT
outperforms WMAlloc by 1. 08 x and achieves 1. 17 x
maximum writes reduction with four workloads on aver-
age.

ST R AR IR R SO SRR A R R, T
4 P TR, i ik WMAlloc (1935 K5 A (HD
RGP Ak o0 LN i 5 A A B R, (B
/MU U 75 B ) 2 NOVA B RS By 1/
4.11,52& DWARM # K5 iy 1/1. 81 (ab b 3OR
BEFR AR5 NOVA il DWARM A kb, WMAlloc #JHx K
BB T 4. 11 F1 1. 81 fi%5; Bk E WMAlloc f-F-
PR A s B4R R 2 4. 11 A1 1. 81 4%) . 5 NOVA
FI DWARM A FL, fir 2 751 WMAlloc fY44: BE 431l 2
T 1.02 1,64 fi5, WA TE4 A TAERE T, WMAIL-
loc-BMT fyP:RE & WMAlloc PERERY 1. 08 £, WMAlloc-
BMT 5 K REUE WMAlloe i KRB 1/1. 17,

S TE times Jig H less B LR H/NE /D7 |
R 25 A SCHEUAE times J5 ) reduction 7 [
RAIAEEOC R (3 DR 25 45080 N 19 5 2, 18 SCh
“ x T RIEED) BN |

Experimental results show that, compared with the
original NOVA and dynamic wear-aware range manage-
ment (DWARM) , which is the state-of-the-art wear-lev-

eling-aware allocator of PM file systems, WMAlloc can,

respectively, achieve 4. 11 x and 1.81 X maximum write

number reduction and 1. 02 x and 1. 64 x performance

with four workloads on average. Furthermore, WMAlloc-
BMT outperforms WMAlloc with 1.08 x performance and

achieves 1. 17 x maximum write number reduction with

four workloads on average.
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